LUXEON Versat Dual Color
Industry-leading dual color solutions

LUXEON Versat Dual Color is a single source, dual color LED product family designed for dual function automotive signaling applications. This family of dual products provides design flexibility, automotive reliability and ease of integration/manufacturing to facilitate simplified system integration for high-volume automotive designs. All LUXEON Versat Dual Color LEDs are AEC-Q102 qualified and cold binned at 25 °C.

**FEATURES AND BENEFITS**
- Single source, dual color LED streamlines lamp integration and design flexibility
- Optimized package drives efficient light extraction
- Industry standard footprint for simple integration
- Low Z profile simplifies optical design and minimizes design space
- Low thermal resistance for optimized thermal performance and lower system cost

**PRIMARY APPLICATIONS**
- Daytime Running Lights
- Front Turn
# Table of Contents

**General Product Information** ................................................................. 2
  - Product Test Conditions ................................................................. 2
  - Environmental Compliance ............................................................ 2

**Performance Characteristics** ............................................................... 3
  - Product Selection Guide ............................................................... 3
  - Optical Characteristics ................................................................. 3
  - Electrical and Thermal Characteristics ........................................... 3
  - Absolute Ratings ........................................................................... 4

**Characteristic Curves CW** ................................................................. 5
  - Spectral Power Distribution Characteristics ................................ 5
  - Light Output Characteristics ....................................................... 6
  - Forward Current and Voltage Characteristics ............................. 7
  - Color Shift Characteristics ........................................................ 8

**Characteristic Curves PCA** ................................................................. 9
  - Spectral Power Distribution Characteristics ................................ 9
  - Light Output Characteristics ....................................................... 10
  - Forward Current and Voltage Characteristics ............................. 11
  - Color Shift Characteristics ........................................................ 12
  - Radiation Pattern Characteristics CW/PCA ............................... 13
  - Operating Limits Characteristics CW/PCA ................................. 13
  - Permissible Pulse Handling Characteristics CW/PCA ................. 14

**Product Bin and Labeling Definitions** ............................................... 15
  - Designing with LUXEON Versat Dual Color ................................ 15
  - Decoding Product Bin Labeling .................................................. 15
  - Luminous Flux Bins .................................................................... 16
  - Color Codes ................................................................................ 16
  - Color Bin Definitions ................................................................. 17
  - Forward Voltage Bins .................................................................. 17

**Mechanical Dimensions** .................................................................... 18
  - JEDEC Moisture Sensitivity ......................................................... 18

**Packaging Information** ...................................................................... 19
  - Pocket Tape Dimensions ............................................................. 19
  - Reel Dimensions .......................................................................... 19
  - Product Labelling ......................................................................... 20
General Product Information

Product Test Conditions
LUXEON Versat Dual Color is tested and binned using a 20 ms monopulse (MP) at 150 mA drive current, case temperature, T_J, of 25 °C.

Part Number Nomenclature
Part numbers for LUXEON Versat Dual Color follow the convention below:

\[
\text{A 1 V C – A B 0 0 C D E 0 0 0 0 F 0}
\]

Where:
- A – designates product segment (A = Automotive)
- 1 – designates product level (1 = Level 1)
- V – designates product line/family (V = LUXEON Versat)
- C – designates package size (C = Standard)
- A B – designates color (DT = Dual Color)
- C – designates binning current (A = 150 mA)
- D – open space
- E – designates generation (1 = first generation)
- F – designates luminous flux bin (2, 3)

Therefore, the following part number is used for a LUXEON Versat Dual Color CW/PCA with a minimum luminous flux of 48 lumens for CW and 30 lumens for PCA:

\[
\text{A 1 V C – D T 0 0 A 0 1 0 0 0 0 2 0}
\]

Environmental Compliance
Lumileds LLC is committed to providing environmentally friendly products to the solid-state lighting market. LUXEON Versat Dual Color CW/PCA is compliant to the European Union directives on the restriction of hazardous substances in electronic equipment, namely the RoHS Directive 2011/65/EU and REACH Regulation (EC) 1907/2006. Lumileds LLC will not intentionally add the following restricted materials to its products: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE).
Performance Characteristics

Product Selection Guide

Table 1. Product selection for LUXEON Versat Dual Color at 20 ms MP, 150 mA, $T_c = 25 \, ^\circ\mathrm{C}$

<table>
<thead>
<tr>
<th>COOL WHITE LUMINOUS FLUX ($\text{lm}$)</th>
<th>PC AMBER LUMINOUS FLUX ($\text{lm}$)</th>
<th>TEST CURRENT (mA)</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-64</td>
<td>30-40</td>
<td>150</td>
<td>A1VC-DT00A01000020</td>
</tr>
<tr>
<td>53-70</td>
<td>33-44</td>
<td>150</td>
<td>A1VC-DT00A01000030</td>
</tr>
<tr>
<td>58-76</td>
<td>36-48</td>
<td>150</td>
<td>A1VC-DT00A01000040</td>
</tr>
</tbody>
</table>

Notes for Table 1:
1. Lumileds maintains a tolerance of ±10% on luminous flux measurements.

Optical Characteristics

Table 2. Typical optical characteristics for LUXEON Versat Dual Color at 20 ms MP

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>CORRELATED COLOR TEMPERATURE (K)</th>
<th>DOMINANT WAVELENGTH (nm)</th>
<th>SPECTRAL HALF-WIDTH (nm) $\Delta \lambda_{1/2}$</th>
<th>TYPICAL TOTAL INCLUDED ANGLE $\Theta_{0.90V}$</th>
<th>TYPICAL VIEWING ANGLE $2\theta_{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1VC-DT00A010000x0</td>
<td>Cool White 5500-6250</td>
<td>587.0-592.6</td>
<td>77</td>
<td>140°</td>
<td>120°</td>
</tr>
<tr>
<td></td>
<td>PC Amber 175</td>
<td>MINIMUM</td>
<td>MAXIMUM</td>
<td>MINIMUM</td>
<td>MAXIMUM</td>
</tr>
</tbody>
</table>

Notes for Table 2:
1. Total angle at which 90% of total luminous flux is captured.
2. Viewing angle is the off axis angle from the LED centerline where the luminous intensity is ½ of the peak value.
3. Spectral width at ½ of the peak intensity.

Electrical and Thermal Characteristics

Table 3. Typical electrical and thermal characteristics for LUXEON Versat Dual Color

<table>
<thead>
<tr>
<th>COLOR</th>
<th>FORWARD VOLTAGE ($V_f$)</th>
<th>ELECTRICAL THERMAL RESISTANCE, $R_{th, j-c , \text{elect}}$ (K/W)</th>
<th>REAL THERMAL RESISTANCE, $R_{th, j-c , \text{real}}$ (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MINIMUM</td>
<td>MAXIMUM</td>
<td>TYPICAL</td>
</tr>
<tr>
<td>Cool White</td>
<td>2.70</td>
<td>3.20</td>
<td>13</td>
</tr>
<tr>
<td>PC Amber</td>
<td>2.70</td>
<td>3.20</td>
<td>16</td>
</tr>
</tbody>
</table>

Notes for Table 3:
1. Lumileds maintains a tolerance of ±0.06V on forward voltage measurements.
2. $R_{th, j-c \, \text{elect}}$: Electrical thermal resistance (junction to case).
3. $R_{th, j-c \, \text{real}}$: Real thermal resistance (junction to case) with wall plug efficiency included. Reference JESD51-51, JESD51-14, 4.1.3.
### Absolute Ratings

#### Table 4. Absolute ratings for LUXEON Versat Dual Color

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum DC Forward Current</td>
<td>30 mA</td>
</tr>
<tr>
<td>Maximum DC Forward Current Cool White/PC Amber</td>
<td>250 mA</td>
</tr>
<tr>
<td>Maximum Junction Temperature [1]</td>
<td>150 °C</td>
</tr>
<tr>
<td>Operating Case Temperature at test current [1]</td>
<td>-40 to 125 °C</td>
</tr>
<tr>
<td>Operating Case Temperature at maximum current</td>
<td>-40 to 125 °C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40 to 130 °C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>260 °C</td>
</tr>
<tr>
<td>Allowable Reflow Cycles</td>
<td>3</td>
</tr>
<tr>
<td>ESD Sensitivity [2]</td>
<td>±8 kV HBM, ±400V MM, ±2 kV CDM</td>
</tr>
<tr>
<td>Reverse Voltage ($V_{reverse}$)</td>
<td>LUXEON LEDs are not designed to be driven in reverse bias</td>
</tr>
</tbody>
</table>

#### Notes for Table 4:

1. Given for reference only, LUXEON Versat Dual Color LEDs driven above maximum LED case temperature and/or maximum If may have shorter lifetime.
2. Measured using human body model (per JESD22 A114), machine model (per JESD22 A115) and charged device model (per JESD22 C101).
Characteristic Curves CW

Spectral Power Distribution Characteristics

Figure 1. Typical normalized power vs. wavelength for LUXEON Versat Dual Color CW at 20 ms MP, 150 mA, $T_c = 25^\circ$C
Light Output Characteristics

Figure 2. Typical normalized light output vs. case temperature for LUXEON Versat Dual Color CW 20 ms MP, 150 mA

Figure 3. Typical normalized light output vs. forward current for LUXEON Versat Dual Color CW at $T_c = 25^\circ C$
Forward Current and Voltage Characteristics

Figure 4. Typical forward current vs. forward voltage for LUXEON Versat Dual Color CW at $T_c = 25^\circ$C

Figure 5. Typical forward voltage shift vs. case temperature for LUXEON Versat Dual Color CW at 20 ms MP, 150 mA
Color Shift Characteristics

Figure 6. Typical color shift in CIE 1931 $x$ and $y$ coordinates for LUXEON Versat Dual Color CW at 20 ms MP, 150 mA

Figure 7. Typical color shift in CIE 1931 $x$ and $y$ coordinates over angle for LUXEON Versat Dual Color CW at 20 ms MP, 150 mA
Figure 8. Typical normalized power vs wavelength for LUXEON Versat Dual Color PCA at 20 ms MP, 150 mA, TC= 25 °C
Light Output Characteristics

Figure 9. Typical normalized light output vs case temperature for LUXEON Versat Dual Color PCA at 20 ms MP, 150 mA

Figure 10. Typical normalized light output vs forward current for LUXEON Versat Dual Color PCA at TC= 25 °C
Forward Current and Voltage Characteristics

Figure 11. Typical forward current vs forward voltage for LUXEON Versat Dual Color PCA at TC= 25 °C

Figure 12. Typical forward voltage shift vs case temperature for LUXEON Versat Dual Color PCA
Color Shift Characteristics

Figure 13. Typical color shift in CIE 1931 x and y coordinates for LUXEON Versat 3030 Dual Color PCA at 20 ms MP, 150 mA

Figure 14. Typical color shift in CIE 1931 x and y coordinates over angle for LUXEON Versat Dual Color PCA at 20 ms MP, 150 mA
Radiation Pattern Characteristics CW/PCA

Figure 15. Typical radiation pattern for LUXEON Versat Dual Color CW/PCA at 20 ms MP, 150 mA, TC= 25 °C

Operating Limits Characteristics CW/PCA

Figure 16 Maximum forward current vs case temperature for LUXEON Versat Dual Color CW/PCA
Permissible Pulse Handling Characteristics CW/PCA

Figure 17 Permissible pulse handling capability for LUXEON Versat 3030 Dual Color CW/PCA
Product Bin and Labeling Definitions

Designing with LUXEON Versat Dual Color
Flux bins supportable for car programs depend on product color and program start-of-production and end-of-production dates. Flux roadmaps by year and product color are maintained and available from the sales representative. Please contact a local sales representative to request the flux bin range with best supportability for program timing.

Decoding Product Bin Labeling
In the manufacturing of semiconductor products, there are variations in performance around the average values given in the technical datasheets. For this reason, Lumileds bins the LED components for luminous flux or radiometric power, color point, peak or dominant wavelength and forward voltage.

LUXEON Versat Dual Color LEDs are labeled using a 5-digit alphanumeric CAT code following the format below:

A B C D E

Where:

A – designates luminous flux bin
(example: 2 = 48 lumens to 64 lumens for Cool White and 30 lumens to 40 lumens for PC Amber)

B – designates color bin for Cool White

C – designates color bin for PC Amber

D – designates forward voltage bin for Cool White (example: A = 2.7 V to 2.94 V)

E – designates forward voltage bin for PC Amber (example: A = 2.7 V to 2.94 V)

Luminous Flux Bins
Table 5 lists the standard luminous flux bins for LUXEON Versat Dual Color CW/PCA emitters. Product availability in a particular bin varies by color and platform start of production date. Contact local sales representative for best supportability of programs.

<table>
<thead>
<tr>
<th>BIN</th>
<th>COOL WHITE LUMINOUS FLUX (Im)</th>
<th>PC AMBER LUMINOUS FLUX (Im)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MINIMUM</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>76</td>
</tr>
</tbody>
</table>

Notes for Table 5:
1. Lumileds maintains a tolerance of ±10 % on luminous flux measurements.
Color Codes

Figure 18a. Color bin structure in CIE 1931 color space for LUXEON Versat Dual Color Cool White

Notes for Figure 18a:
1. LUXEON Versat Dual Color CW color bins must be ordered by fine bin designators, shown below.
6 = 4, 5

Figure 18b. Color bin structure in CIE 1931 color space for LUXEON Versat Dual Color PC Amber
Color Bin Definitions

Table 6a. Color bin definitions for LUXEON Versat Dual Color Cool White

<table>
<thead>
<tr>
<th>BIN</th>
<th>x[^1, 2]</th>
<th>y[^1, 2]</th>
<th>TYPICAL CCT (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3169</td>
<td>0.3353</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3246</td>
<td>0.3424</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3253</td>
<td>0.3266</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3185</td>
<td>0.3203</td>
<td>6050</td>
</tr>
<tr>
<td>5</td>
<td>0.3246</td>
<td>0.3424</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3325</td>
<td>0.3493</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3323</td>
<td>0.3329</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3253</td>
<td>0.3266</td>
<td>5680</td>
</tr>
</tbody>
</table>

Notes for Table 6a:
1. Lumileds maintains a tester tolerance of ±0.005 on x and y color coordinates.
2. CIE 1931 x and y coordinate frame.

Table 6b. Color bin definitions for LUXEON Versat Dual Color PC Amber

<table>
<thead>
<tr>
<th>BIN</th>
<th>x[^1, 2]</th>
<th>y[^1, 2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.5613</td>
<td>0.4383</td>
</tr>
<tr>
<td></td>
<td>0.5480</td>
<td>0.4250</td>
</tr>
<tr>
<td></td>
<td>0.5750</td>
<td>0.4070</td>
</tr>
<tr>
<td></td>
<td>0.5800</td>
<td>0.4190</td>
</tr>
</tbody>
</table>

Notes for Table 6b:
1. Lumileds maintains a tester tolerance of ±0.005 on x and y color coordinates.
2. CIE 1931 x and y coordinate frame.

Forward Voltage Bins

Table 7. Forward voltage bin definitions for LUXEON Versat Dual Color CW/PCA

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MINIMUM</td>
</tr>
<tr>
<td>A</td>
<td>2.70</td>
</tr>
<tr>
<td>B</td>
<td>2.94</td>
</tr>
</tbody>
</table>

Notes for Table 7:
1. Although several bins are outlined, product availability in a particular bin varies by production run and by product performance.
2. Lumileds maintains a tolerance of ±0.06V on forward voltage measurements.
Mechanical Dimensions

Figure 19. Mechanical dimensions for LUXEON Versat Dual Color CW/PCA

Notes for Figure 19:
1. Drawings are not to scale.
2. All dimensions are in millimeters.

JEDEC Moisture Sensitivity

Table 8. Moisture sensitivity levels for LUXEON Versat Dual Color

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>FLOOR LIFE</th>
<th>STANDARD SOAK REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TIME</td>
<td>CONDITIONS</td>
</tr>
<tr>
<td>2</td>
<td>1 Year</td>
<td>≤30 °C / 60 % RH</td>
</tr>
</tbody>
</table>
Packaging Information

Pocket Tape Dimensions

1. Carrier tape
2. Cover tape, thickness 0.06±0.013

Figure 20. Pocket tape dimensions for LUXEON Versat Dual Color

Notes for Figure 20:
1. Drawings are not to scale.
2. All dimensions are in millimeters.

Reel Dimensions

Notes for Figure 21:
1. Drawings are not to scale.
2. All dimensions are in millimeters.

Figure 21. Reel dimensions for LUXEON Versat Dual Color
Product Labelling

LUXEON Versat Dual Color LEDs are packaged in moisture barrier bags on reels. Both moisture barrier bag and reels have printed information providing part numbers with CAT codes that indicate luminous flux bin, color bins and forward voltage bins.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total number of LED emitters in a shipment box.</td>
</tr>
<tr>
<td>2</td>
<td>Lumileds part number.</td>
</tr>
<tr>
<td>3</td>
<td>Customer part number for custom requests only.</td>
</tr>
<tr>
<td>4</td>
<td>LED test date in YYWW format.</td>
</tr>
<tr>
<td>5</td>
<td>Unique product lot identification number. This number is required for traceability purposes.</td>
</tr>
<tr>
<td>6</td>
<td>Country code of origin of manufacturing of part (e.g. MY for Malaysia, CN for China) according to ISO 3166-1 alpha-2 document.</td>
</tr>
<tr>
<td>7</td>
<td>Product bin 5-digit alphanumeric CAT code.</td>
</tr>
</tbody>
</table>

Figure 22. Example of a reel label LUXEON Versat Dual Color

Notes for Figure 22 - Reel label descriptions for customer use:
Field labels not described are for Lumileds internal use only.

1. Total number of LED emitters in a shipment box.
2. Lumileds part number.
3. Customer part number for custom requests only.
4. LED test date in YYWW format.
5. Unique product lot identification number. This number is required for traceability purposes.
6. Country code of origin of manufacturing of part (e.g. MY for Malaysia, CN for China) according to ISO 3166-1 alpha-2 document.
7. Product bin 5-digit alphanumeric CAT code.
About Lumileds

Companies developing automotive, mobile, IoT and illumination lighting applications need a partner who can collaborate with them to push the boundaries of light. With over 100 years of inventions and industry firsts, Lumileds is a global lighting solutions company that helps customers around the world deliver differentiated solutions to gain and maintain a competitive edge. As the inventor of Xenon technology, a pioneer in halogen lighting and the leader in high performance LEDs, Lumileds builds innovation, quality and reliability into its technology, products and every customer engagement. Together with its customers, Lumileds is making the world safer, better and more beautiful—with light.

To learn more about our lighting solutions, visit lumileds.com.